10,783 research outputs found

    On the characterization of multiaxial data in terms of the strain energy concept

    Get PDF
    Continuous media theory for characterization of multiaxial mechanical behavior of solid propellants - strain energy concep

    Musica Tejana: More Than Conjuntos and Orquestas

    Get PDF

    Learning and coordinating in a multilayer network

    Get PDF
    We introduce a two layer network model for social coordination incorporating two relevant ingredients: a) different networks of interaction to learn and to obtain a payoff , and b) decision making processes based both on social and strategic motivations. Two populations of agents are distributed in two layers with intralayer learning processes and playing interlayer a coordination game. We find that the skepticism about the wisdom of crowd and the local connectivity are the driving forces to accomplish full coordination of the two populations, while polarized coordinated layers are only possible for all-to-all interactions. Local interactions also allow for full coordination in the socially efficient Pareto-dominant strategy in spite of being the riskier one

    Competition and dual users in complex contagion processes

    Full text link
    We study the competition of two spreading entities, for example innovations, in complex contagion processes in complex networks. We develop an analytical framework and examine the role of dual users, i.e. agents using both technologies. Searching for the spreading transition of the new innovation and the extinction transition of a preexisting one, we identify different phases depending on network mean degree, prevalence of preexisting technology, and thresholds of the contagion process. Competition with the preexisting technology effectively suppresses the spread of the new innovation, but it also allows for phases of coexistence. The existence of dual users largely modifies the transient dynamics creating new phases that promote the spread of a new innovation and extinction of a preexisting one. It enables the global spread of the new innovation even if the old one has the first-mover advantage.Comment: 9 pages, 4 figure

    Multilayer coevolution dynamics of the nonlinear voter model

    Full text link
    We study a coevolving nonlinear voter model on a two-layer network. Coevolution stands for coupled dynamics of the state of the nodes and of the topology of the network in each layer. The plasticity parameter p measures the relative time scale of the evolution of the states of the nodes and the evolution of the network by link rewiring. Nonlinearity of the interactions is taken into account through a parameter q that describes the nonlinear effect of local majorities, being q = 1 the marginal situation of the ordinary voter model. Finally the connection between the two layers is measured by a degree of multiplexing `. In terms of these three parameters, p, q and ` we find a rich phase diagram with different phases and transitions. When the two layers have the same plasticity p, the fragmentation transition observed in a single layer is shifted to larger values of p plasticity, so that multiplexing avoids fragmentation. Different plasticities for the two layers lead to new phases that do not exist in a coevolving nonlinear voter model in a single layer, namely an asymmetric fragmented phase for q > 1 and an active shattered phase for q 1, we can find two different transitions by increasing the plasticity parameter, a first absorbing transition with no fragmentation and a subsequent fragmentation transition

    Stochastic Effects in Physical Systems

    Full text link
    A tutorial review is given of some developments and applications of stochastic processes from the point of view of the practicioner physicist. The index is the following: 1.- Introduction 2.- Stochastic Processes 3.- Transient Stochastic Dynamics 4.- Noise in Dynamical Systems 5.- Noise Effects in Spatially Extended Systems 6.- Fluctuations, Phase Transitions and Noise-Induced Transitions.Comment: 93 pages, 36 figures, LaTeX. To appear in Instabilities and Nonequilibrium Structures VI, E. Tirapegui and W. Zeller,eds. Kluwer Academi

    Competing contagion processes: Complex contagion triggered by simple contagion

    Full text link
    Empirical evidence reveals that contagion processes often occur with competition of simple and complex contagion, meaning that while some agents follow simple contagion, others follow complex contagion. Simple contagion refers to spreading processes induced by a single exposure to a contagious entity while complex contagion demands multiple exposures for transmission. Inspired by this observation, we propose a model of contagion dynamics with a transmission probability that initiates a process of complex contagion. With this probability nodes subject to simple contagion get adopted and trigger a process of complex contagion. We obtain a phase diagram in the parameter space of the transmission probability and the fraction of nodes subject to complex contagion. Our contagion model exhibits a rich variety of phase transitions such as continuous, discontinuous, and hybrid phase transitions, criticality, tricriticality, and double transitions. In particular, we find a double phase transition showing a continuous transition and a following discontinuous transition in the density of adopted nodes with respect to the transmission probability. We show that the double transition occurs with an intermediate phase in which nodes following simple contagion become adopted but nodes with complex contagion remain susceptible.Comment: 9 pages, 4 figure

    Means and method of measuring viscoelastic strain Patent

    Get PDF
    Photographic method for measuring viscoelastic strain in solid propellants and other material

    Miniature stress transducer Patent

    Get PDF
    Miniature solid state, direction sensitive, stress transducer design with bonded semiconductive piezoresistive element for sensing residual stresse
    • …
    corecore